
FPGA as real-time Xenomai/Linux co-processor

G. Goavec-Merou, September 25, 2022

Suject available at http://www.trabucayre.com/enseignement/tp_fpga.pdf

Codes available at http://www.trabucayre.com/enseignement/tp_fpga_sources.tgz

1 Goals
We have seen that the real-time extension of Linux – Xenomai – aims to reduce the variability of a request, and in particular to limit the time
interval between the event and the associated action.

To evaluate the various solutions (sharing-time, real-time and FPGA) we will use a Redpitaya platform, based on Zynq7000, having a
software environment where Xenomai is available and an FPGA.

A major benefit of the CPU+FPGA combination is to provide a hierarchy on latencies – low on CPU, good on the Xenomai extension,
excellent with the FPGA – at the expense of the complexity of implementing a given algorithm – simple on CPU, more complex on Xenomai,
long to debug on FPGA. The time resolution of the operations on the FPGA is 8 ns, since the core of the FPGA is clocked at 125 MHz 1.

This series of practical work has three steps:

1. the first step will consist in becoming familiar with the principle of CPU/FPGA communication and the AXI bus;

2. then a resumption of the practical work on Xenomai will be necessary to have the applications in user space necessary for the last part
of the practical work;

3. finally we are going to realize a period counter, in the FPGA, in order to evaluate the load stability characteristics of Linux and Xenomai
applications.

2 Working environment
All development and compilation are done on the host machine. The binaries must then be moved to a directory on the computer available
from the card through a network mount. The manipulations, on the platform, will be done in a terminal, through a serial communication.

2.1 Compilating applications
As part of periodic signal generation tests, scripts are available to automate compilation:

For Linux applications, the following command should be used:

1 make

For real-time application the command will be:

1 make −f Make f i l e . xenomai

2.2 Binaries access from the plateform
Instead of transferring files to the Redpitaya card, we will use a network service called NFS (Network File System). Thanks to this one, it is
possible to mount a directory of the computer on the platform and thus to directly access its contents in a transparent manner (fig. 1).

To do that, it’s necessary, on the target size, to use the following command:

1 # mount 1 9 2 . 1 6 8 . 2 . 1 : / home/ etud iant / n f s /mnt

With:

• 192.168.2.1, the host IP (to be adapted to each workstation);

• /home/etudiant/nfs the shared host’s directory;

• /mnt local (target) directory where to mount distant (host) directory.

À partir de maintenant tous les binaires (.bit.bin pour le FPGA et applications) devront être copiés dans le répertoire /home/etudiant/nfs
du PC et l’ensemble du travail sur la carte devra être fait dans le répertoire /mnt

From now, all the binaries (.bit.bin for the FPGA and applications) will have to be copied into the /home/etudiant/nfs PC’s directory
and all the work on the board will have to be done in the /mnt directory

1however, we will take care to note that this 125 MHz is the result of a multiplication by PLL and therefore of poor stability – we will prefer
provide a good quality external clock for accurate time measurements – with the problem of transferring data between domains clocked by the
external clock and the domain clocked by the CPU clock, necessary to synchronize the exchanges on the buses common to the components

1

http://www.trabucayre.com/enseignement/tp_fpga.pdf
http://www.trabucayre.com/enseignement/tp_fpga_sources.tgz

etudiant jmfriedt

bin local

/

usr

/

home usr
RedPitaya

nfs

PC

Figure 1: NFS : The contents of the PC’s /home/etudiant/nfs directory can be accessed directly from the target board
through the /mnt directory.

3 CPU-FPGA communication
We were able to see, in the first part of the lab, the temporal characteristics of Linux and Xenomai, the measurements are done thanks to a
dedicated gateware in the FPGA (real-time component by nature). In the second part of this lab, we will focus on the FPGA part. With the
final goal of realizing the counter used to qualify the various solutions.

To achieve these goals, we will do this sequence of development:

1. CPU-FPGA communication (Linux kernel, FPGA communication bus),

2. counter implementation in the FPGA and transfer of the value to the CPU,

3. use of the FPGA to measure the jitter of a signal produced by the generic processor, with and without Xenomai.

4 Hardware and software environnment
As mentioned earlier, the hardware used, a RedPitaya, based on a Zynq has, into the same chip, a generalist processor and an FPGA.
Communication between the two zones uses AXI buses (fig 2).

Our first software development concerns the communication protocol between processing blocks in the FPGA: each block is coded in
VHDL, and the communication protocol between blocks as well as between CPU and FPGA must be implemented in this language.

Gatewares that will be used in the following differ from the classic approach to development on Zynq. This is to avoid the complexity of
package updates each time the code is modified. The various applications were generated using Peripheral On Demand2 which is an assembly
tool for HDL blocks (not covered in this tutorial). The block design containing the processing system is confined and the AXI bus exported.
POD generates an address decoder (the intercon to communicate independently with each slave (figure 3) integrated into the gateware (figure
4). The role of this component is to divide the memory range into several zones.

4.1 bitstream generation
Bitstream generation from VHDL sources is carried out by the Vivado application.

To launch this tool, first shell environment must be updated by:

1 source / opt/ Xi l i nx /Vivado/VERSION/ s e t t i n g s 6 4 . sh
export LANG=en US .UTF−8

Followed by:

vivado&

Lastly, opening the project and start the generation by clicking on generate bitstream

2http://github.com/martoni/periphondemand

2

http://github.com/martoni/periphondemand

AXI intercon

IP1

IP2

external periph

core ARM A9

GIC

PL

ZYNQ

global intercon

PS

Figure 2: Simplied scheme to the Zynq internal structure.

bloc design

IP2

IP1
intercon

ZYNQ_wrapper

Axi

clk

reset

reset

axi

clk

reset

axi

clk

Figure 3: FPGA design example

5 First step with FPGA-CPU communication: adder
project is located into /home/etudiant/tp fpga sources/design/exercice addition directory and project file to use with vivado

is in objs/exercice addition.xpr sub-directory

This first exercise is an opportunity to become familiar with communication through the AXI bus. To do this we will create an IP
(Intellectual Property), or component, which performs an addition.

5.1 Basic principle of AXI communication
Given the relative complexity of the AXI bus (fig. 5) and the abstraction layer presented previously, the part dedicated to the management of
the communication must take into account only a subset of signals (fig. 6). Apart from the two data buses s00 axi wdata and s00 axi rdata,
the other signals are created locally and used between the abstraction layer and the process.

The management of transactions with the processor presents two control signals:

• write en s : write request (CPU point of view), active high;

• read en s : read request, also active high;

Two data signals and a common address signal:

• addr s : register address, common to writing and reading;

• readdata s : read data bus. Must be update by IP. A local copy must be present too: required to keep current value (not possible with
an output/write only signal):

• s00 axi wdata : write request data bus. Is read by the IP.

3

0x00

0x01

0x02

0x00

0x01b
lo

c
k

2

F
P

G
A

 A
d

d
re

s
s

b
lo

c
k

1

0x04

0x00

reg1

reg1

reg2

reg3

reg2

Intercon viewCPU view component view

Figure 4: Principle of abstraction of component addresses in the FPGA. The address range dedicated to communication
between the CPU and the FPGA is divided into several sub-addresses. The intercon performs the decoding and addresses
the component concerned by providing him with the register number corresponding to the transaction.

1 Entity en s e i gnement add i t i on ax i i s
g e n e r i c (

3 id : natura l := 1 ;
−− Parameters o f Axi S lave Bus I n t e r f a c e S00 AXI

5 C S00 AXI DATA WIDTH : i n t e g e r := 32 ;
C S00 AXI ADDR WIDTH : i n t e g e r := 5) ;

7 port (
−− ax i s l a v e s i g n a l s

9 s 0 0 a x i a c l k : in s t d l o g i c ;
s 0 0 a x i r e s e t : in s t d l o g i c ;

11 s00 axi awaddr : in s t d l o g i c v e c t o r (C S00 AXI ADDR WIDTH−1 downto 0) ;
s00 ax i awprot : in s t d l o g i c v e c t o r (2 downto 0) ;

13 s 00 ax i aw va l i d : in s t d l o g i c ;
s00 ax i awready : out s t d l o g i c ;

15 s00 ax i wdata : in s t d l o g i c v e c t o r (C S00 AXI DATA WIDTH−1 downto 0) ;
s 0 0 a x i w v a l i d : in s t d l o g i c ;

17 s00 ax i wready : out s t d l o g i c ;
s 00 ax i ws t rb : in s t d l o g i c v e c t o r (3 downto 0) ;

19 s 0 0 a x i b r e s p : out s t d l o g i c v e c t o r (1 downto 0) ;
s 0 0 a x i b v a l i d : out s t d l o g i c ;

21 s00 ax i b r eady : in s t d l o g i c ;
s 0 0 a x i a r a d d r : in s t d l o g i c v e c t o r (C S00 AXI ADDR WIDTH−1 downto 0) ;

23 s 0 0 a x i a r p r o t : in s t d l o g i c v e c t o r (2 downto 0) ;
s 0 0 a x i a r v a l i d : in s t d l o g i c ;

25 s 0 0 a x i a r r e a d y : out s t d l o g i c ;
s 0 0 a x i r d a t a : out s t d l o g i c v e c t o r (C S00 AXI DATA WIDTH−1 downto 0) ;

27 s 0 0 a x i r r e s p : out s t d l o g i c v e c t o r (1 downto 0) ;
s 0 0 a x i r v a l i d : out s t d l o g i c ;

29 s 0 0 a x i r r e a d y : in s t d l o g i c) ;
end e n t i t y en s e i gnement add i t i on ax i ;

Figure 5: Example of the entity part of an IP with AXI communication.

4

Arch i t e c tu r e ense i gnement add i t i on 1 o f en s e i gnement add i t i on ax i i s
2 s i g n a l addr s : s t d l o g i c v e c t o r (INTERNAL ADDR WIDTH−1 downto 0) ;

s i g n a l w r i t e en s , r e a d e n s : s t d l o g i c ;
4

s i g n a l r eaddata s : s t d l o g i c v e c t o r (C S00 AXI DATA WIDTH−1 downto 0) ;
6 begin

s 0 0 a x i r d a t a <= readdata s ;

Figure 6: Subset of signals needed for access management from the processor.

5.2 Addition block Implementation
Given the relative simplicty of this component, this one has only 4 registers:

1 constant REG ID : s t d l o g i c v e c t o r (2 downto 0) := ”000” ;
constant REG OP1 : s t d l o g i c v e c t o r (2 downto 0) := ”001” ;

3 constant REG OP2 : s t d l o g i c v e c t o r (2 downto 0) := ”010” ;
constant REG RESULT : s t d l o g i c v e c t o r (2 downto 0) := ”011” ;

• ID register (RO). Mandatory. Located at address 0x00;

• two operators registers (WO), located at 0x01 and 0x02 respectively;

• the last register is used to retrieve addition result. Located at 0x03 (RO).

To have a more clean code structure, read and write (CPU point of view) requests are implemented using two different processes.

5.3 Read management
A first process is used to handle read access (CPU point of view). For the two registers with a read access, requests are handled like this (see
following listing):

• REG ID for unique id register (0x00) ;

• REG RESULT to provides addition result (0x03).

r e ad b l o c : p roce s s (c lk , r e s e t)
2 begin

i f r e s e t = ’1 ’ then
4 readdata s <= (othe r s => ’ 0 ’) ;

e l s i f r i s i n g e d g e (c l k) then
6 readdata s <= readdata s ;

i f r e a d e n s = ’1 ’ then
8 case addr s i s

when REG ID =>
10 readdata s <= s t d l o g i c v e c t o r (to uns igned (id , C S00 AXI DATA WIDTH)) ;

when REG RESULT =>
12 readdata s <= r e s u l t s ;

when othe r s =>
14 readdata s <= (othe r s => ’ 0 ’) ;

end case ;
16 end i f ;

end i f ;
18 end proce s s r ead b l o c ;

In this process we check firstly read en s signal (high during one clock cycle) to determine if a read request is in progress. If the state is
low, readdata s remain unchanged. Otherwise the addr s content is evaluated (with a case statement) to know which register is acceded, and
read data bus is updated accordingly. When the address didn’t match any of supported register the data bus is updated with a default value.

5.4 Write management
For a write request, principle remain, globally the same as a read request: write en s is sampled and when its state is high the value of the
address bus is analyzed.

w r i t e b l o c : p roce s s (c lk , r e s e t)
2 begin

i f r e s e t = ’1 ’ then
4 op1 s <= (othe r s => ’ 0 ’) ;

op2 s <= (othe r s => ’ 0 ’) ;
6 e l s i f r i s i n g e d g e (c l k) then

op1 s <= op1 s ;

5

8 op2 s <= op2 s ;
i f w r i t e e n s = ’1 ’ then

10 case addr s i s
when REG OP1 =>

12 op1 s <= s00 ax i wdata ;
when REG OP2 =>

14 op2 s <= s00 ax i wdata ;
when othe r s =>

16 end case ;
end i f ;

18 end i f ;
end proce s s w r i t e b l o c ;

When address match one of supported registers (using again a case statement) corresponding signal is updated using writedata s signal
value. When the address is invalid: nothing is done but for code coverage a others statement is present.

5.5 CPU side: FPGA Communication
For this first exercise we will use devmem utility. This one allows to do read/write accesses directly to anywhere into the memory area (in
our case: the shared memory between CPU and FPGA). It is used like this:

1 devmem 0x10 32 −−> read @ 0x10
devmem 0x10 32 0x1234 −−> w r i t e s 0x1234 @ 0x10

Second parameter (32) mean an 32 bits access.
Our IP is located at 0x43C00000 (absolute/CPU base address).
Two importants points to keep in mind:

1. the address used by devmem est absolue;

2. communication is done using 32 bits data size (4Bytes). So each registers address are multiples of 4 (or shifted by 2) (first is at 0xYYY00,
second at 0xYYYY04, ...);

3. data size parameter is optional for read access (default is 32), but is mandatory for write access

Block ID read (address 0x43C00000 + 0x00) :

redpitaya> devmem 0x43C00000
2 0x00000001

Writing value 2 into register REG OP1 (0x43C00004 = 0x43C00000 + 0x01 << 2)

redpitaya> devmem 0x43C00004 32 2

Writting value 3 into register REG OP2 (0x43C00008 = 0x43C00000 + 0x02 << 2)

redpitaya> devmem 0x43C00008 32 3

Result access (5) by reading register REG RESULT (0x43C0000c = 0x43C00000 + 0x03 << 2)

redpitaya> devmem 0x43C0000c
2 0x00000005

5.6 Exercises
1. complete read and write processes;

2. REG OP1 and REG OP2 registers are write only: based on REG ID and REG RESULT registers, add required code to read,
from the CPU, current value;

3. This block, currently, is limited to the addition operation: add a new register to select between addition and substraction (asynchronous
affectation must be, also, updated).

Note : one way to have a conditional affectation, in asynchronous mode, is to use something like:

s i g n a l d e s t i n a t i o n <= o p e r a t i o n o u v a l e u r s i c o n d i t i o n v r a i when cond i t i on
2 e l s e o p e r a t i o n o u v a l e u r s i c o n d i t i o n f a u s s e ;

6

6 Reading a RAM from the CPU
VHDL project is located into /home/etudiant/tp fpga/design/exercice ram directory and vivado’s project file is into ob-
js/exercice ram.xpr sub-directory

The idea to this second application is to start a long treatment from the CPU. This treatment will be simulated by a RAM’s filling with
some arbitrary data. This block must, also, provoding a status in order to inform CPU if it must wait for treatment completion or if fetching
data may be done.

This second exercise will be to realize a block that :

1. following start request reception, it begins a pseudo acquisition. This one consist to start a counter and to fill a RAM using the
counter’s value as RAM’s address and data;

2. status bit management in order to inform CPU when the block is busy or ready to new acquisition and/or previous acquisition’s data
fetching. Reading this status bit has to be done by CPU using a polling method; met à l’état haut un signal d’état pour signifier au
processeur si l’acquisition est en cours ou fini. Le processeur pourra lire la valeur de ce signal au travers d’un registre de statut et le
sondera par polling;

3. transmitting to the CPU the RAM’s content with an address auto-increment at each new read request (acting as a pseudo FIFO).

So we need 4 registers:
31 ... 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID
registre 0x00 : unique block ID. Read only.

31 ... 13 12 11 10 9 8 7 6 5 4 3 2 1 0
X busy

registre 0x01 : status register. Read only. busy
remain high during acquisition. Low otherwise.

31 ... 13 12 11 10 9 8 7 6 5 4 3 2 1 0
X start

registre 0x02 : Read Write. When start is set to
1: start acquisition.

31 ... 13 12 11 10 9 8 7 6 5 4 3 2 1 0
data

registre 0x03 : Read only. This register is used to
fetch data one by one from the RAM.

VHDL language is relatively complex and verbose. To keep code readable, this block is splitted into 3 files:

• a wrapper to the RAM;

• a file dedicated to everything about CPU/FPGA communication;

• a “top” file containing all sub-entities instantiation and the processing part (counter, RAM write access)

6.1 Pseudo acquisition : synthesis/enseignement ram/enseignement ram.vhd
The process used to simulate a data stream acquisition has 2 states (represented by busy states):

• when busy signal has a low level state (l.13-17), the process is idle and waits for an acquisition request from the CPU (signal
start acquisition s). When this signal goes high during one clock cycle (l.14-17), the process reset counter et set busy to high;

• when busy has a high level state (l.18-27), the process increment the counter to each clock cycle and send a write request to the RAM.
When counter value is equal to 210 − 1, busy signal goes to low and the process is again into idle state;

Since busy signal has an high state during all the acquisition, this one is propagate towards AXI communication to be used as status bit.

c p t s t o r a g e p r o c : p roce s s (s 0 0 a x i a c l k , s 0 0 a x i r e s e t)
2 begin

i f s 0 0 a x i r e s e t = ’1 ’ then
4 busy s <= ’ 0 ’ ;

cp t addr s <= (othe r s => ’ 0 ’) ;
6 c p t ad dr ne x t s <= 0 ;

c p t e n s <= ’ 0 ’ ;
8 e l s i f r i s i n g e d g e (s 0 0 a x i a c l k) then

c p t e n s <= ’ 0 ’ ;
10 cp t addr s <= cpt addr s ;

cp t ad dr ne x t s <= c pt ad dr ne x t s ;
12 busy s <= busy s ;

i f busy s = ’0 ’ then −− s t a t e i d l e
14 i f s t a r t a c q u i s i t i o n s = ’1 ’ then

busy s <= ’ 1 ’ ;
16 c p t ad dr ne x t s <= 0 ;

cp t addr s <= (othe r s => ’ 0 ’) ;
18 end i f ;

e l s e −− s t a t e s t o rage
20 cp t addr s <= s t d l o g i c v e c t o r (unsigned (cp t addr s) + 1) ;

c p t d a t a s <= (31 downto 10 => ’ 0 ’) & cpt addr s ;
22 c p t e n s <= ’ 1 ’ ;

i f cp t ad d r ne x t s = 1023 then
24 busy s <= ’ 0 ’ ;

e l s e

7

26 c p t ad dr ne x t s <= c pt ad dr ne x t s +1;
end i f ;

28 end i f ;
end i f ;

30 end proce s s ;

6.2 AXI communication : synthesis/enseignement ram/ens ram comm.vhd

6.2.1 Writing management

Only one register is handled: REG START. It copy writedata s LSB into start acquisition o. This signal is propagate towards acquisition
process seen before, as start acquisition signal.

The signal produce by REG START doesn’t keep its value: at the next clock cycle, when write condition are no more validate this signal
goes to low level. This behavior is required to avoid to restart acquisition as soon as finished.

6.2.2 Reading management

In addition to handling the id it must handle:

• requests to know the state of the block (busy or inactive). This task consists of concatenating a set of bits in the low state ((31 downto
1 => ’0’)) and as the LSB the signal busy i corresponding to the signal of the acquisition process;

• the requests for obtaining the successive data contained in the RAM. This process consists of copying the value carried by the data
bus of the RAM (signal data val i) in the data bus FPGA towards CPU and to advance the index of the RAM for the request next
reading. It should be noted that when the data addr s signal reaches 0x3ff its increment will reset this signal to 0x000.

Note: For data reading, the process, must to each requests, doing to tasks:

1. RAM address increment;

2. writing to readdata s the current value contained to the RAM data read bus.

6.3 CPU communication
Utilities like devmem doesn’t fit requirement to read a full dataset. Of course, it’s always possible to write a script to handle that with this
tool but this approach isn’t optimal because each calls imply a long serie of subcall between userspace and kernel space.

This why we will uses an userspace application, written in C langage, to communicate between CPU and FPGA.
For Linux point of view, we must convert the physical address to virtual address (due to MMU). Mapping between both address is

automatically done by software and hardware. To have access to the virtual address with GNU/Linux, ones must using mmap(). But this
requires firstly time to open /dev/mem pseudo-file to have access to the memory.

So the first step for FPGA access is to open /dev/mem in Read and Write mode:

i n t fd = open (”/dev/mem” , ORDWR|O SYNC) ;
2 i f (fd < 0) {

p r i n t f (”can ’ t open f i l e /dev/mem\n”) ;
4 re turn −1;
}

With the file descriptor fd we now have to request, using mmap, a pointer to the memory base address corresponding to the physical one
where we wish to access.

1 void ∗ pt r fpga = mmap(0 , 8192 , PROT READ|PROT WRITE, MAP SHARED,
fd , 0x43C00000) ;

3 i f (p t r f pga == MAP FAILED) {
p r i n t f (”mmap f a i l e d \n”) ;

5 re turn −2;
}

and, finally, we can do a read like this:

1 unsigned i n t pos = f p g a o f f s e t+ r e g i s t r e ;
unsigned shor t content = ∗(unsigned shor t ∗) (p t r f pga +((unsigned shor t) (pos))) ;

and for writing:

unsigned i n t pos = f p g a o f f s e t + r e g i s t r e ;
2 ∗(unsigned shor t ∗) (p t r f pga + pos) = (unsigned shor t) va lue ;

The full piece of code will look like that:

i n t fd = open (”/dev/mem” , ORDWR|O SYNC) ;
2 i f (fd < 0)

re turn EXIT FAILURE ;
4 p t r f pga = mmap(0 , page s i z e , PROT READ|PROT WRITE, MAP SHARED,

8

fd , FPGA BASE ADDR) ;
6 i f (p t r f pga == MAP FAILED)

return −2;
8

pos = FPGA OFFSET + REG ID ;
10 value = ∗(unsigned shor t ∗) (p t r f pga +((unsigned shor t) pos)) ;

i f (va lue != 1)
12 re turn EXIT FAILURE ;

14 pos = FPGA OFFSET + REG START;
∗(unsigned shor t ∗) (p t r f pga+pos) = 0x01 ;

16
pos = FPGA OFFSET + REG STATUS;

18 do {
value = ∗(unsigned shor t ∗) (p t r f pga +((unsigned shor t) pos)) ;

20 } whi le ((va lue & 0x01) == 0x01) ;

22 pos = FPGA OFFSET + REG DATA;
f o r (i =0; i <1024; i++) {

24 value = ∗(unsigned shor t ∗) (p t r f pga +((unsigned shor t) pos)) ;
p r i n t f (”%hu\n” , va lue) ;

26 }

• Firstly, it open /dev/mem (l.1-3), then uses mmap (l.4-7) to obtain a pointer to the memory address corresponding to the block into
the FPGA mémoire correspondant au bloc dans le FPGA;

• then a read is done to the register containing ID to check the match (l.9-12);

• it sent a start acquisition request (l.14-15) and wait until task is finished (l.17-20);

• At the end it fetch sequentially the dataset contained into the RAM (l.22-26) and displays each value.

To compile this program, it’s necessary at first time, using this command:

source sourceme . ggm

(This file is located at archive’s root).
Then use make into the directory containing sources et finally copied binary file called app exercice ram into /home/etudiant/nfs with

cp.
To execute this application and fetching values to a file, on the platform, into /mnt directory, you have to use the command ./

app exercice ram > test1.dat (> caracter is used to redirect STDOUT towards test1.dat).

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

0 10 20 30 40 50

0

200

400

600

800

1000

1200

Figure 7: Result seems good (left) ... But shows an incoherency (ramp seems shifted by one sample).

Complete the exercice ram gateware’s code, then run the acquisition. Using octave display the curve. It must be simitar to one shown in
figure 7.

a = load (” t e s t 1 . dat ”) ;
2 p l o t (a) ;

We can see that instead of having a sequence between 0 and 1023 (i.e. 1024 points), the first point is worth 1023 then the continuation is
logical with 1022 as last value.

Propose a solution so that the data is correctly aligned (the error does not necessarily come from the communication part).

9

7 Realization of the measurement-storage component
The first two exercises made it possible to acquire the basics of communication between the processor and the FPGA within the framework
of communication by AXI bus. It is now possible to create the counter block used to evaluate the latencies of an in GNU/Linux user space
application or in the real-time domain of Xenomai.

The purpose of this exercise is to have a block able of measuring the duration between two consecutive rising edges, with a counting depth
allowing durations of several seconds.

7.1 Period counter implementation

debounce_proc

RAM

cpt_proc

d
e
te
c
t_
e
d
g
e
_
s

statem_proc
data

wen

addr

cpt_s
external_signal

Figure 8: Global scheme of IP to implement

The counter part of this component is divided into three process (Fig. 8):

1. a debounce proc process: its role is to “clean up” the signal to be studied. Indeed, this signal comes from an external system, “glitches”
may appear and false the results. This process also drives a signal which, if high, warns the other processes of the detection of a rising
edge.

2. a process cpt proc which counts the number of periods of the FPGA clock between two rising edges of the signal to be studied. His
value is reset on detection of the edge and incremented otherwise;

3. a statem proc process, similar to the pseudo-acquisition process of exercise 2, comprises a state machine which is by default in waiting
for an acquisition order from the processor. When this order is received, the process performs n consecutive acquisitions before to
return to the initial state.

7.2 debounce proc
The principle of this process is to evaluate a series of past states of the signal to be sampled to ensure that it has remained stable during this
time.

This mechanism is based on a shift register, updated at each rising edge of the clock, which maintains the state of the signal over several
clock cycles. So if the register is composed of ’1’ the state is a stable high state, if it is only composed of ’0’ it is a stable low state.

To determine the state change (low-high or high-low transition), a signal is used. Thus, if the state determined by the register is high
and the signal is ’0’ there was a rising edge and vice versa. This detection is used to propagate the rising edge information for the processing
carried out by the other process.

7.3 cpt proc
This process sample, at each clock cycle, the state of the detection signal of a rising edge:

• if high, the counter is reset to 0 (use of (others => ’0’));

• if low the signal is incremented by cpt s <= std logic vector(unsigned(cpt s) + 1);

In order to be able to count several seconds, the counter is coded on 32 bits.

7.4 statem proc
Overall, this process is close to the pseudo-acquisition of the previous exercise.

It has three states:

1. an IDLE state: the process is waiting for the order, coming from the processor, to start a series of acquisitions;

2. a wait first edge state: in order to guarantee the consistency of the data, the process waits for a first edge of the sampled signal
before start the acquisition;

3. the last state acquire time also waits for a high level signifying the detection of an edge. When this condition is evaluated as true, a
write to RAM is triggered. At the same time, the address is evaluated to determine if the acquisition is finished. In the first case, the
state changes to IDLE again, otherwise the address value is incremented.

10

7.5 FPGA’s communication layer
Communication handling code, proposed in ths project, is the same as previous exercise.

7.6 Communication: CPU’s side
Here again, considering similarities between this exercise with previous, code is the same as previous exercise.

7.7 Measurement of the period of the sampled signal
Results for gpio sleep (Figs. 9, xeno gpio sleep (Figs. 10) and xeno gpio timer (Figs. ??) They present results consistent with the measurements
already described using an oscilloscope. Result for gpio sigalarm are not presented because they seem very suspicious (excessive dispersion of
measurements).

The histograms were obtained with octave thanks to the commands:

a = load (’ nom du f i ch i e r . dat ’) ;
a = a . / 1 2 5 ; % conver s i on base 8ns en 1us
f i g u r e ; [xx , nn]= h i s t (a , [1 1 5 0 : 1 0 0 : 2 0 0 0]) ; bar (nn , l og (xx+1))
xlim ([1150 2000]) ; x l a b e l (’ i n t e r v a l l e de temps (us) ’) ; y l a b e l (’ l og (occurences +1) ’)
t i t l e (’ un t i t r e ’) ;

Limits [1150:100:2000] are to be adapted according to results.

1200 1250 1300 1350 1400 1450 1500 1550 1600 1650
0

1

2

3

4

5

6

7

intervalle de temps (us)

lo
g

(o
c
c
u

re
n

c
e

s
+

1
)

counter gpio sleep.dat

1150 3150 5150 7150 9150 1115013150151501715019150211502315025150271502915031150
0

1

2

3

4

5

6

7

intervalle de temps (us)

lo
g

(o
c
c
u

re
n

c
e

s
+

1
)

counter gpio sleep charge.dat

Figure 9: Measurement of a periodic signal generated by a user-space application in which the change of the output state
occurs after 500µs by using the usleep command, thus giving a period of 1ms. Left: on an unloaded system the period
lasts on average 1440 µs (min 1377 µs, max 1538 µs). Right: on a loaded system, the signal fluctuates between 1385 µs
and 40 ms.

8 Linux and Xenomai qualifications
Applications are stored into /home/etudiant/tp fpga sources/apps/gpio test xeno directory

In order to evaluate the behavior of the different domains in the case of an unloaded and loaded system, we will generate a periodic signal
by software. The period will be 1ms. We will therefore have to change the state of a pin (pin E8/PS MIO13 500 corresponding to pin 6 of the
E2 connector of the Redpitaya) every 500µs.

To do that, we will implement this sequence with two differents approaches:

1. suspending the task during a fixed duration;

2. by using a timer.

11

1200 1250 1300 1350 1400 1450 1500 1550 1600 1650
0

1

2

3

4

5

6

7

intervalle de temps (us)

lo
g

(o
c
c
u

re
n

c
e

s
+

1
)

counter xeno gpio sleep.dat

1150 1250 1350 1450 1550 1650 1750 1850 1950
0

1

2

3

4

5

6

7

intervalle de temps (us)

lo
g

(o
c
c
u

re
n

c
e

s
+

1
)

counter xeno gpio sleep charge.dat

Figure 10: Xenomai : generation of a 1 ms signal on hold. Left: no loaded system, periods have mainly a duration of
1340 µs (min : 1271 µs, max : 1476 µs). Right: the trend remains equivalent (min : 1251 µs, max : 1560 µs).

1200 1250 1300 1350 1400 1450 1500 1550 1600 1650
0

1

2

3

4

5

6

7

intervalle de temps (us)

lo
g

(o
c
c
u

re
n

c
e

s
+

1
)

counter xeno gpio timer.dat

1150 1250 1350 1450 1550 1650 1750 1850 1950
0

1

2

3

4

5

6

7

intervalle de temps (us)

lo
g

(o
c
c
u

re
n

c
e

s
+

1
)

counter xeno gpio timer charge.dat

Figure 11: Xenomai : generation of a 1ms signal using a timer. Left: not loaded system, periods are mainly of a duration
of 1330 µs (min : 1281 µs, max : 1451 µs). Right: the trend remains the same (1256 µs to 1623 µs).

12

8.1 Periodic signal generation: sleep mode

i n t main (void)
2 {

g p i o c o n f i g ;
4

whi l e (1) {
6 t o g g l e p i n

s l e e p
8 }
}

gpio sleep.c : periodic signal generation principle:
Linux domain.

1
void b l ink (void ∗ arg)

3 {
whi le (1) {

5 t o g g l e p i n
s l e e p

7 }

9 }

11 i n t main (void)
{

13 g p i o c o n f i g ;
c r e a t e t a s k

15 s t a r t t a s k
wait

17 d e l e t e t a s k

19 }

xeno gpio sleep.c : periodic signal generation princi-
ple: Xenomai domain.

8.1.1 Handling pins from a userspace application

Configuring pins is done in two steps:
Initializing communication layer using the function:

1 unsigned char ∗ r e d g p i o i n i t (i n t pin num) ;

with pin num the pin number. This function return a pointer toward gpio controller memory area.
then, pin configuration as output:

1 void r e d g p i o s e t c f g p i n (unsigned char ∗mem, i n t pin num) ;

with:

• unsigned char *mem pointer returned by reg gpio init function;

• pin num pin ID, here: 13.

Toggling the pin state is done with this function:

1 void r ed gp io output (unsigned char ∗mem, i n t num, i n t va lue) ;

with:

• mem memory pointer;

• num pin ID;

• value: new state (0: low, otherwise high)

8.1.2 Putting the process to sleep

For a Linux’s userspace application the function to use is:

1 i n t u s l e ep (useconds t usec) ;

Where usec is the duration (µs) (integer).
For Xenomai the equivalent function is:

1 i n t nanos leep (const s t r u c t t imespec ∗ rqtp , s t r u c t t imespec ∗rmtp) ;

with:

• rqtp a structure already filled:

1 s t r u c t t imespec tim = {0 ,TIMESLEEP} ;

This struct is passed by pointer (’&’). TIMESLEEP: ns duration (integer)

• rmtp unused: NULL.

13

8.1.3 Real-time task creation

A Xenomai application is launched from the time-shared scheduler, to be able to switch to the real-time scheduler it is necessary to create a
task that will perform the processing.

This function:

1 i n t r t task spawn (RT TASK ∗ task , const char ∗name , i n t s t k s i z e , i n t pr io , i n t mode ,
void (∗) (void ∗ cook i e) entry , void ∗ cook i e) ;

Allows to create the task and start it, parameters are:

• task : a pointer to the task already defined;

• name : task name (or NULL).

• stksize : stack size. Using 0 lets the system decid. décider;

• prio : task’s priority, for our tests we will uses 99 (highest priority);

• mode : T JOINABLE: main thread will wait until task stop;

• entry : a function’s pointer. This function is the task behavior;

• cookie : to pass something (informations, params) to the function (NULL when unused).

To avoid main stop before task stop, it’s required to use the function:

i n t r t t a s k j o i n (RT TASK ∗ task) ;

where the parameter is the pointer (RT TASK) to the task (rt task spawn).

8.2 Signal generation using a timer

1
void b l ink (i n t signum)

3 {
t o g g l e p i n

5 }

7 i n t main (void)
{

9 g p i o i n i t ;

11 e v e n t h a n d l e r i n i t
t i m e r i n i t

13
whi l e (1) {}

15 }

gpio sigalarm.c : periodic signal generation using a
timer (Linux domain).

1
void b l ink (void ∗ arg)

3 {
t i m e r i n i t

5
whi l e (1) {

7 wa i t t imer
t o g g l e p i n

9 }
}

11
i n t main (void)

13 {
g p i o i n i t ;

15 t a s k c r e a t e
s t a r t s t a r t

17 wait
t a s k d e l e t e

19 }

xeno gpio sigalarm.c : periodic signal generation using
a timer (Linux domain).

GPIO configuration and task management, for Xenomai, remain the same.

8.2.1 Timer configuration: Linux scheduler

The management of a timer (call to an interrupt handler) is done in several parts:
Registering a function as signal SIGVTALRM handler
Done using a structure:

1 s t r u c t s i g a c t i o n sa ;

First: all attributes must be to ’0’ using

1 memset (void ∗ptr , i n t c , s i z e t n) ;

where:

• ptr : structure’s pointer (use of ’&’);

• c character to use (’0’);

• n write size (Byte) (sizeof(sa)).

The second step is to pass the function’s pointer to this structure. It will be called when the event is triggered:

14

1 sa . sa hand l e r = &t e s t ;

And finally we must register our handler to respond to the right event using the function:

1 i n t s i g a c t i o n (i n t signum , const s t r u c t s i g a c t i o n ∗act ,
s t r u c t s i g a c t i o n ∗ o ldac t) ;

where:

• signum is the event ID (SIGVTALRM);

• act : the tructure previously filled;

• oldact : unused (NULL), allows to save current configuration.

configuration of the generation of a signal at regular intervals on a Linux scheduler
This step is based on filling a structure:

s t r u c t i t i m e r v a l t imer ;

4 fields must be filled:

• it value.tv sec : initial trigger after ’n’ sec (so 0)

• it value.tv usec : initial trigger after ’n’ usec (so 500)

• it interval.tv sec : periodic trigger after (0)

• it interval.tv usec : periodic trigger after ’n’ usec (500)

And finally the function:

1 i n t s e t i t i m e r (i n t which , const s t r u c t i t i m e r v a l ∗new value ,
s t r u c t i t i m e r v a l ∗ o l d v a l u e) ;

• which defines which timer compter to use and which signal will be emitted (ITIMER VIRTUAL);

• new value : a structure already filled;

• old value : unused (NULL) to save current configuration;

8.2.2 Timer configuration: Xenomai scheduler

Using a timer to achieve a period task is done in two steps;
configuration :

i n t r t t a s k s e t p e r i o d i c (RT TASK ∗ task , RTIME idate , RTIME per iod) ;

with:

• task a pointer to an already available task. If NULL the current task becomes periodic;

• idate starting time. If TM NOW: the start is immediate avant le démarrage;

• period period length in nanosecond.

then into the loop the function :

1 i n t r t t a s k w a i t p e r i o d (unsigned long ∗ ove r runs r) ;

where overruns r provides overruns number (ou NULL when unused). This function is used to suspend the task until timer trigger.

8.3 Use

8.3.1 Period counter

A bitstream is provided (available at /home/etudiant/tp fpga sources and called top exercice counter.bit.bin). It’s, also, required to
compile and install application located at /home/etudiant/tp fpga sources/apps/app exercice counter

These applications copied into /home/etudiant/nfs are available from board into /mnt directory.
The first step is to flash bitstream using:

1 cp t o p e x e r c i c e c o u n t e r . b i t . bin / l i b / f irmware
echo t o p e x e r c i c e c o u n t e r . b i t . bin > / sys / c l a s s / fpga manager / fpga0 / f irmware

counting and results storage is done by:

. / a p p e x e r c i c e c o u n t e r

15

8.3.2 Testing the various solutions

Since there is only one terminal on the target, the applications must be launched in the background (use of an ’&’ after the name of the
application.

To stop application it’s required to kill it:

1 # ps aux
PID USER COMMAND

3 625 root . / g p i o s l e e p
#k i l l 625

Once the application is launched, a series of acquisitions will be made by running the command ./app exercise counter. When it stop, a
counter.dat file is created in the current directory. This file must be renamed to be representative of the test.

To load the system, a script, named charge.sh is available in /home/etudiant/tp fpga sources/apps/app exercice counter.

. / charge . sh &

To stop it you must removes attente.nop (with rm).

8.3.3 Use of results

This step is done thanks to octave (host computer). Commands to use are:

1 % f i l e load
a = load (” f i c h i e r . dat ”) ;

3 % time base 8ns => /125 f o r us
a=a . / 1 2 5 ;

5 % d i s p l a y histogram
h i s t (a)

To have better details it’s also possible to use:

1 f i g u r e ; [xx , nn]= h i s t (a , [min (a) : 1 0 : max(a)]) ; bar (nn , l og (xx+1))

Warning : Depending on limits values, and step, this command may be very slow.

References
[1] Wishbone B4 – WISHBONE System-on-Chip (SoC)Interconnection Architecture for Portable IP Cores, OpenCores, 2010

16

	Goals
	Working environment
	Compilating applications
	Binaries access from the plateform

	CPU-FPGA communication
	Hardware and software environnment
	bitstream generation

	First step with FPGA-CPU communication: adder
	Basic principle of AXI communication
	Addition block Implementation
	Read management
	Write management
	CPU side: FPGA Communication
	Exercises

	Reading a RAM from the CPU
	Pseudo acquisition : synthesis/enseignement_ram/enseignement_ram.vhd
	AXI communication : synthesis/enseignement_ram/ens_ram_comm.vhd
	Writing management
	Reading management

	CPU communication

	Realization of the measurement-storage component
	Period counter implementation
	debounce_proc
	cpt_proc
	statem_proc
	FPGA's communication layer
	Communication: CPU's side
	Measurement of the period of the sampled signal

	Linux and Xenomai qualifications
	Periodic signal generation: sleep mode
	Handling pins from a userspace application
	Putting the process to sleep
	Real-time task creation

	Signal generation using a timer
	Timer configuration: Linux scheduler
	Timer configuration: Xenomai scheduler

	Use
	Period counter
	Testing the various solutions
	Use of results

